Lessons 016-017 Continuous Random Variables

Friday, October 13

PMFs with Continuous Random Variables

- Recall that a pmf, $p(x)$, is a function that assigns a probability value to every possible realization in the sample space.
- A continuous random variable is defined by having an uncountable number of possible values to take on.
- If a positive probability were assigned to an uncountable number of events, we would be assigning infinite probability.
- We would also be unable to work with these quantities at all.

CDFs as the Solution

- Recall that the CDF was defined as $F(x)=P(X \leq x)$.
- This was given by a summation of the pmf over possible values.

$$
F(k)=\sum_{x=-\infty}^{k} p(x)
$$

- This is still well defined for continuous random variables.

Continuous Random Variable: CDFs

- If X is a continuous random variable, we define the CDF as:

$$
F(x)=P(X \leq x)
$$

- This is exactly analogous to the discrete CDF.

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

A continuous random variable has CDF $F(x)=1-e^{-x}$. What is the probability that X is less than or equal to 1 ?

$$
1-e^{-1}
$$

$$
\int_{-\infty}^{1}\left(1-e^{-x}\right) d x
$$

0\%

$$
e^{-1}
$$

$$
0 \%
$$

$$
0
$$

A continuous random variable has CDF $F(x)=1-e^{-x}$. What is the probability that X is exactly equal to 1 ?

$$
1-e^{-1}
$$

\int 0\%
$\int_{-\infty}^{1}\left(1-e^{-x}\right) d x$0\%
e^{-1}0\%
The correct answer is 0 .
Remember, the probability that a
continuous random variable takes on continuous random variable takes on0\%
any specific value is always 0 .

The Probability Density Function

- We can use the Fundamental Theorem of Calculus

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

. This gives us that $f(x)=\frac{d}{d x} F(x)$.

- We call $f(x)$ a probability density function.

The Probability Density Function: Continued

- The PDF characterizes a continuous distribution.
- It can be plotted similar to a PMF.
- The PDF does not give probabilities directly, instead we integrate it for probabilities.
. We must have $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x) d x=1$.

A continuous random variable has CDF $F(x)=1-e^{-x}$. What is the probability density function of X ?

$$
1-e^{-x}
$$$1+e^{-x}$$\int$0\%

e^{-x}
0\%$e^{x}$$\int$0\%

Computing Probabilities

- Given a PDF, $f(x)$, we say that

$$
P(X \in[a, b])=\int_{a}^{b} f(x) d x
$$

- Can also write this as $F(b)-F(a)$.
- Recall that $P(X=c)=0$ for every c.

Computing Probabilities

- Given a PDF, $f(x)$, we say that

$$
P(X \geq a)=\int^{\infty} f(x) d x=1-F(a)
$$

- Since $P(X=a)=0$, this is the same as $P(X>a)$.

The PDF of X is given by $f(x)=1$ for $0 \leq x \leq 1$ and 0 elsewhere. What is the probability that X is between $\frac{1}{4}$ and $\frac{3}{4}$?

1
§ 0\%
$f\left(\frac{3}{4}\right)-f\left(\frac{1}{4}\right)$

0

The PDF of X is given by $2 e^{-2 x}$, for $X \geq 0$. What is the probability that $X=3$?
$2 e^{-6}$

$$
\int_{0}^{3} 2 e^{-2 x} d x
$$

$$
\int_{-\infty}^{3} 2 e^{-2 x} d x
$$

Suppose that X has a PDF of $f(x)=\frac{1}{3} x^{2}$ on $[-1,2]$ and 0 elsewhere. What is the CDF of X ?

Do not forget the bounds of
integration! I did (and as a result got the wrong answer :(, the correct
answer is shown).

$$
\begin{aligned}
F(x)=\frac{2}{3} x & =\int_{-1}^{x} \frac{1}{3} x^{2} \\
F(x)=x^{3} & =\left.\frac{t^{3}}{9}\right|_{t=-1} ^{x} \\
F(x)=\frac{x^{3}}{9} & =\frac{x^{3}}{9}-\frac{(-1)^{3}}{9} \\
& =\frac{x^{3}+1}{9}
\end{aligned}
$$

$$
0 \%
$$

$$
0 \%
$$

A continuous random variable has CDF $F(x)=1-e^{-x}$. What is the probability that $X \geq 4$?

$1-e^{-4}$	0%
$1-e^{4}$	0%
e^{-4}	0%
e^{4}	0%

Discrete versus Continuous Random Variables

- Summations become integrals.
$E[X]=\int_{-\infty}^{\infty} x f(x) d x$
$E[h(X)]=\int_{-\infty}^{\infty} h(x) f(x) d x$
$\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]=\int_{-\infty}^{\infty}(x-E[X])^{2} f(x) d x$

Suppose that a random variable has desnity $f(x)=\frac{1}{2}$ on $[0,2]$ and 0 elsewhere. What is $E[X]$?

The Continuous Uniform Distribution

- If X is equally likely to take on any value on an interval $[a, b]$, it has a uniform distribution.
- $X \sim \operatorname{Unif}(a, b)$
. $f(x)= \begin{cases}\frac{1}{b-a} & x \in[a, b] \\ 0 & \text { otherwise }\end{cases}$
. $E[X]=\frac{a+b}{2}$ and $\operatorname{var}(X)=\frac{(b-a)^{2}}{12}$

What is the CDF of X if $X \sim \operatorname{Unif}(a, b)$? (Only on $[a, b]$)

$$
F(x)=\frac{1}{b-a} .
$$

$$
F(x)=\frac{x-a}{b-a}
$$

\int^{b-a}

$$
F(x)=\frac{x}{b-a}
$$

$$
F(x)=\frac{x}{b}-\frac{x}{a} .
$$

$\int(x) \quad{ }^{b}{ }^{a}$.

Percentiles Revisited

- Recall that the $100 p$ th percentile of a distribution divides data so that $100 p \%$ of the data are below and $100(1-p) \%$ are above.
- Define $\eta(p)$ to be the $100 p$ th percentile.
- $\eta(0.5)$ is the median.
- $\eta(0.99)$ is the 99th percentile.
- $\eta(0.25)$ is Q1 and $\eta(0.75)$ is Q3.

Computing Percentiles

- With continuous distributions, can often solve for $\eta(p)$.
$F(\eta(p))=p \Longrightarrow p=\int_{-\infty}^{\eta(p)} f(x) d x$

Suppose that X is a random variable, defined on $[0,10]$ with an unknown distribution function. If $\eta(0.25)=2, \eta(0.5)=5$, and $\eta(0.75)=6$. Which probability is the highest?
$P(X \leq 2)$
1 0\%
$P(2 \leq X \leq 5)$
0 0\%
$P(5 \leq X \leq 6)$
0 0\%
$P(6 \leq X \leq 10)$0\%
All of these probabilities are the same.
0 0\%
There is not enough information provided. 0\%

